
1 Simple Linear Regression

1.1 Least Squares Estimation

Given a dataset of n observations, say (y1, x1), . . . , (yn, xn), with the
sample regression model yi = β0 +β1xi+ εi, the sum of squares (between
the observed response yi and the straight line) is:

S(β0, β1) =

n∑
i=1

ε2i =

n∑
i=1

(yi − β0 − β1xi)
2

Setting ∂S
∂β0

and ∂S
∂β1

to 0, obtain:

nβ̂0 + β̂1

n∑
i=1

xi =

n∑
i=1

yi (1); β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

yixi (2)

β̂0 = ȳ−β̂1x̄, β̂1 =

∑n
i=1 yixi −

(
∑n
i=1 yi)(

∑n
i=1 xi)

n∑n
i=1 x

2
i −

(
∑n
i=1 xi)

2

n

=

∑n
i=1 (xi − x̄)(yi − ȳ)∑n

i=1 (xi − x̄)2

Sxx =
∑n
i=1 x

2
i −

(
∑n
i=1 xi)

2

n
=
∑n
i=1 (xi − x̄)2 = (n− 1)Var(X)

Sxy =
∑n
i=1 yixi −

(
∑n
i=1 yi)(

∑n
i=1 xi)

n
=
∑n
i=1 yi(xi − x̄)

= (n− 1)Cov(x, y), ei = yi − ŷi = yi − β̂0 − β1xi

β̂1 =
Sxy
Sxx

=
Cov(x,y)
Var(x)

=
Cor(x,y)

√
Var(x)

√
Var(y)

Var(x)

1.2 Properties of Least Squares Estimators

� The OLS estimator of the slope β1 is a linear combination of the
observations yi.

β̂1 =
Sxy

Sxx
=

n∑
i=1

ciyi

where ci = (xi−x̄/Sxx), then
∑n
i=1 cixi = 1 and

∑n
i=1 c

2
i = 1/Sxx.

� They are unbiased estimators of their respective parameter:

IE[β̂1] = β1, IE[β̂0] = β0

� Var(β̂1) = Var
(∑n

i=1 ciyi
)

=
∑n
i=1 c

2
iVar(yi) = σ2

Sxx

� Var(β̂0) = Var(ȳ − β̂1x̄) = V ar(ȳ) + x̄2Var(β̂1) − 2x̄Cov(ȳ, β̂1) =

σ2
(

1
n

+ x̄2

Sxx

)
�

∑n
i=1 (yi − ŷi) =

∑n
i=1 ei = 0,

∑n
i=1 yi =

∑n
i=1 ŷi

�

∑n
i=1 xiei = 0,

∑n
i=1 ŷiei = 0

� The least-squares regression line always passes through the point
(x̄, ȳ) of the data.

1.3 Estimation of σ2

The estimate of σ2 is obtaineed from the residual sum of squares:

SSRes =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2

Since ŷi = β̂0 + β̂1xi, we can have

SSRes =
n∑
i=1

y2
i − nȳ2 − β̂1Sxx =

n∑
i=1

(yi − ȳ)2 − β̂1Sxx

Denote SST =
∑n
i=1 (yi − ȳ)2, the corrected sum of squares of the re-

sponse observations, then SSRes = SST − β̂1Sxy . IE(SSRes) = (n−2)σ2,
so an unbiased estimator of σ2 is (RSE) σ̂2 = SSRes/(n− 2) = MSRes.

SSRes has (n− 2) degrees of freedom (due to estimate of β̂0 and β̂1).

1.4 Hypothesis Testing

� Assumed relationship between x and y is linear, errors are uncorre-
lated with mean 0 and constant variance σ2

� Now we must assume εi normally distributed, iid N(0, σ2), so: there
is a normally distributed sub-population of responses for each value
of the explanatory variable, each sub-population has same variance

Test the hypothesis that the slope is a constant, β10:

H0 : β1 = β10 vs H1 : β1 6= β10

Z0 =
β̂1 − β10

SD(β̂1)
=

β̂1 − β10√
σ2/Sxx)

∼ N(0, 1)

Typically σ2 is unknown, so we estimate test statistic by replacing σ2 by
its unbiased estimator σ̂2 = SSRes/(n− 2) = MSRes. Z0 estimated by:

t0 =
β̂1 − β10√
MSRes/Sxx

=
β̂1 − β10

SE(β̂1)
∼ tn−2, where SE(β̂1) =

√
MSRes

Sxx

Test the hypothesis that the intercept is a constant, β00: Similarly,

t0 =
β̂0 − β00

SE(β̂0)
∼ tn−2, where SE(β̂0) =

√
MSRes(1/n+ x̄2/Sxx)

Testing the significance of regression:

H0 : β1 = 0 vs H1 : β1 6= 0

We can either use t-test with test statistic t0 = β̂1−0

SE(β̂1)
, or use ANOVA.

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2

SST = SSR +SSRes

SST has df = n − 1 due to the constraint
∑n
i=1 (yi − ȳ) = 0. SSR =

β̂1 × Sxy has df = 1, SSRes has df = n− 2.

Under H0 : β1 = 0,

F0 =
SSR/1

SSRes/(n− 2)
=

MSR

MSRes
∼ F1,n−2

1.5 Interval Estimation

� If the errors are iid N(0, σ2) then sampling distribution of both

(β̂1 − β1)/SE(β̂1) and (β̂0 − β0)/SE(β̂0) are both tn−2.

� 100(1− α)% CI for slope, intercept, variance σ2:

∗ β̂1 − tn−2(α/2)× SE(β̂1) ≤ β1 ≤ β̂1 + tn−2(α/2)× SE(β̂1)

∗ β̂0 − tn−2(α/2)× SE(β̂0) ≤ β0 ≤ β̂0 + tn−2(α/2)× SE(β̂0)

∗ (n−2)MSRes
χ2
n−2(α/2)

≤ σ2 ≤ (n−2)MSRes
χ2
n−2(1−α/2)

Let x0 be the level of the regressor for which we want to estimate the
mean response IE(y|x0). An unbiased point estimator of IE(y|x0) is:

̂IE(y|x0) = µ̂y|x0 = β̂0 + β̂1x0

µ̂y|x0 is normally distributed with the variance:

Var(µ̂y|x0 ) = Var(β̂0 + β̂1x0) = Var[ȳ + β̂1(x0 − x̄)]

=
σ2

n
+
σ2(x0 − x̄)2

Sxx
= σ2

[
1

n
+

(x0 − x̄)2

Sxx

]
µ̂y|x0 − IE(y|x0)√

MSRes[1/n+ (x0 − x̄)2/Sxx]
∼ tn−2

µ̂y|x0 − tn−2(α/2)
√
MSRes[1/n+ (x0 − x̄)2/Sxx] ≤ IE(y|x0) ≤

µ̂y|x0 + tn−2(α/2)
√
MSRes[1/n+ (x0 − x̄)2/Sxx]

Interval width minimised at x0 = x̄ and widens as |x0− x̄| increases. The
SE for a CI for mean response takes into account sampling uncertainty.
The prediction interval for future observation y0 can also be obtained.
With ŷ0 = β̂0 + β̂1x0 for certain x0, consider the r.v. ψ = y0 − ŷ0, which
is normally distributed with mean 0 and Var(ψ) = Var(y0 − ŷ0). Since
y0 is independent of ŷ0:

Var(ψ) = Var(y0)− 2Cov(y0, ŷ0) + Var(ŷ0)

= σ2 + σ2

[
1

n
+

(x0 − x̄)2

Sxx

]
= σ2

[
1 +

1

n
+

(x0 − x̄)2

Sxx

]
ŷ0 − tn−2(α/2)

√
MSRes[1 + 1/n+ (x0 − x̄)2/Sxx] ≤ y0 ≤

ŷ0 + tn−2(α/2)
√
MSRes[1 + 1/n+ (x0 − x̄)2/Sxx]

The SE for PI of future observation takes into account sampling uncer-
tainty, as well as variability of the individuals around the predicted mean.

1.6 Coefficient of Determination R2

R2 =
SSR

SST
= 1−

SSRes

SST
= Cor(y, ŷ)2 = Cor(x, y)2

R2 is the proportion of variation explained by the regressor x.

1.7 No-Intercept Regression Model

Model: y = β1x+ ε; LS function: S(β1) =
∑n
i=1 (yi − β1xi)

2

β̂1
∑n
i=1 x

2
i =

∑n
i=1 yixi; unbiased estimator of slope: β̂1 =

∑n
i=1 yixi∑n
i=1 x

2
i

Estimator of σ2 is σ̂2 = MSRes =
∑n
i=1 (yi−ŷi)2

n−1
=

∑n
i=1 y

2
i−β̂1

∑n
i=1 yixi

n−1

1.8 Estimation by Maximum Likelihood

yi ∼ N(β0 + β1xi, σ
2). Differentiate L wrt β0, β1, σ2 and set to 0.

L(yi, xi, β0, β1) =
∏n
i=1 (2πσ2)−1/2 exp

[
1

2σ2 (yi − β0 − β1xi)
2
]

The estimates of β̃0 and β̃1 are the same as OLS method, but (biased)
σ̃2 = 1

n

∑n
i=1 (yi − β̃0 − β̃1xi)

2 = [(n− 1)/n]σ̂2.
In general, MLE have better statistical properties than LS estimators:
they are unbiased (σ̃2 asymptotically unbiased), have minimum variance
when compared to all other unbiased estimators, are consistent, and are
a set of sufficient statistics, but require full distributional assumption.
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2 Multiple Linear Regression

2.1 Least Squares Estimation

Model: yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi; y = Xβ + ε

y =


y1

y2

...
yn

 ,X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk

 , β =


β1

β2

...
βn

 , ε =


ε1
ε2
...
εn


β̂ = (X′X)−1X′y, provided (X′X)−1 exists (which is always the case if
the regressors are linearly independent). The fitted model is:

ŷ = x′β̂ = β̂0 +

k∑
i=1

β̂jxj = Xβ̂ = X(X′X)−1X′y = Hy

2.2 Properties of Least Squares Estimators

IE(β̂) = β (unbiased)

Cov(β̂) = Var(β̂) = Var
[
(X′X)−1X′y

]
= (X′X)−1X′Var(y)

[
(X′X)−1X′

]′
= σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1

Denote C = (X′X)−1,

then Var(β̂j) = σ2Cjj , and

Cov(β̂i, β̂j) = σ2Cij

2.3 Estimation of σ2

Estimator of σ2 (model dependent) is σ̂2 = MSRes.

SSRes =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2i = e′e = (y−Xβ̂)′(y−Xβ̂) = y′y−β̂′X′y

SSRes has n− p df. MSRes = SSRes
n−p ; IE(MSRes) = σ2 (unbiased).

2.4 Hypothesis Testing

Test for significance of regression:

H0 : β1 = β2 = · · · = βk = 0 vs H1 : βj 6= 0, for at least one j

SSR = β̂′X′y − 1
n

(∑n
i=1 yi

)2
, SSRes = y′y − β̂′X′y,

SST = y′y − 1
n

(∑n
i=1 yi

)2
, SST = SSR + SSRes

F0 =
SSR/k

SSRes/(n− k − 1)
=

MSR

MSRes
∼ Fk,n−k−1

R2
Adj penalizes for added terms to the

model that are not significant:
R2
Adj = 1−

SSRes/(n− p)
SST /(n− 1)

Test significance of individual βj (contribution of xj given all other re-
gressors in model): H0 : βj = 0 vs H1 : βj 6= 0

t0 =
β̂j√
σ̂2Cjj

=
β̂j

SE(β̂j)
∼ tn−p = tn−k−1

where Cjj is the diagonal
element of (X′X)−1

corresponding to β̂j
Test significance of a group of variables:

Denote β =

[
β1

β2

]
= (β0 β1 · · ·︸ ︷︷ ︸

β1

βk−r−1 · · · βk︸ ︷︷ ︸
β2 with r coefficients

)′
Full model:
y = Xβ + ε
= X1β1+X2β2+ε

H0 : β2 = 0 vs H1 : β2 6= 0 Reduced model: y = X1β1 + ε
LSE of β1 in reduced model: β̂ = (X′1X1)−1X′1y, with SSR(β1)
SSR(β2|β1) = SSR(β)− SSR(β1) (extra sum-of-squares due to β2)

F0 =
SSR(β2|β1)/r

MSRes
∼ Fr,n−p

2.5 Interval Estimation

Assume errors εi normally distrubuted, mean 0, variance σ2, hence:
yi ∼ N(β0 +

∑k
i=1 βjxij , σ

2), with β̂ ∼ N
(
β, σ2(X′X)−1

)
. Thus the

marginal distribution of β̂j is N
(
βj , σ

2Cjj
)

where Cjj is the jth diago-
nal element of the matrix (X′X)−1.

β̂j − βj√
σ̂2Cjj

∼ tn−p, j = 0, 1, · · · , k

100(1− α)% CI for βj (where SE(β̂j =
√
σ̂2Cjj):

β̂j − tn−p(α/2)
√
σ̂2Cjj ≤ βj ≤ β̂j + tn−p(α/2)

√
σ̂2Cjj

CI on mean response: Define x0 = (1 x01 · · · x0k)′. Fit ŷ0 = x′0β̂.
This is an unbiased estimator of IE(y|x0), since IE(ŷ0) = x′0β = IE(y|x0).
Var(ŷ0) = σ2x′0(X′X)−1x0.
100(1− α)% CI on mean response at x01, x02, · · · , x0k is:(
ŷ0 − tn−p(α/2)

√
σ̂2x′0(X′X)−1x0; ŷ0 + tn−p(α/2)

√
σ̂2x′0(X′X)−1x0

)
It can be shown that
(β̂−β)′X′X(β̂−β)

pMSRes
∼ Fp,n−p.

Hence 100(1− α)% joint CI for all
parameters in β is:

(β̂ − β)′X′X(β̂ − β)

pMSRes
≤ Fp,n−p

Another general approach for obtaining simultaneous CI of parameters
is constructing β̂j ±∆SE(β̂j), j = 1, · · · , k. In Bonferroni method, set
∆ = tn−p(α/2p). With this method, the probability is at least (1 − α)
that all intervals are correct. For each interval, the confidence level is
(1− α/p).

At a particular point x01, x02, · · · , x0k, 100(1 − α)% prediction inverval
for future observation is:

ŷ − tn−p(α/2)
√
σ̂2
(
1 + x′0(X′X)−1x0

)
≤ y0

≤ ŷ + tn−p(α/2)
√
σ̂2
(
1 + x′0(X′X)−1x0

)
2.6 Interpretation of Regression Coefficients

First interpretation: consider regressor xj , keeping all other regres-
sors constant, when xj increases by 1 unit, mean response increases by
βj units. But if model has (at least) an interaction term that involves xj
then this interpretation may not be correct.

Second interpretation: the contribution of xj to y after both y
and xj have been linearly adjusted for all other regressors. Consider
y = β0 + β1x1 + β2x2 + ε to interpret the effect of x2 on y.

Step 1: Model 1 = model y on x1 (linearly adjust y on x1):
ŷ = α̂0 + α̂1x1, residual: y − ŷ = ey.x1
Step 2: Model 2 = model x2 on x1 (linearly adjust x2 on x1):
x̂2 = γ̂0 + γ̂1x1, residual: x2 − x̂2 = ex2.x1
Step 3: Model 3 = model ey.x1 on ex2.x1 (the effect of x2 after y and x2

are linearly adjusted for x1):

êy.x1 = λ̂0 + λ̂1x1, residual: ey.x1 − êy.x1
Now with Model 2, y = β0 + β1x1 + β2(γ0 + γ1x1 + ex2.x1 ) = (β0 +
β2γ0) + (β1 + β2γ1)x1 + (β2ex2.x1 + ε). With Model 1 and 3, we have:

α0 = β0 + β2γ0, α1 = β1 + β2γ1, ey.x1 = β2ex2.x1 + ε

Similarly,
ey.x2 = β1ex1.x2 + ε

In general, for a multiple linear regression model:

ey.x2x3···xk = β1ex1.x2x3···xk+ε

ey.x1x3···xk = β2ex2.x1x3···xk+ε

· · ·
ey.x1x2···xk−1 = βkexk.x1x2···xk−1+ε

2.7 Hidden Extrapolation in Multiple Regression

Define the smallest convex set containing all of original n data points
(xi1, xi2, · · · , xik), i = 1, · · · , n as the regressor variable hull (RVH). If
a point x01, x02, · · · , x0k lies inside or on the boundary of RVH, in-
terpolation; else extrapolation. The diagonal elements hii of the hat
matrix H = X(X′X)−1X′ are useful in detecting hidden extrapola-
tion. Denote the largest hii as hmax. The set of points x that satisfy
x′(X′X)−1x ≤ hmax is an ellipsoid enclosing all points inside the RVH.
To check for the point x′0 = [1, x01, x02, · · · , x0k], then h00 =
x′0(X′X)−1x0. If h00 > hmax, then extrapolation and vice versa.

2.8 Standardized Regression Coefficients

Assume response y with observations y1, · · · , yn, k regressors xj , each
has n observations: xij , i = 1, · · · , n, j = 1, · · · , k. Unit normal scaling:
Regressors:

zij =
xij−x̄j
sj

, x̄j =
∑n
i=1 xij
n

s2j =
∑n
i=1 (xij−x̄j)2

n−1

Response:

y∗i = yi−ȳ
sy

, ȳ =
∑n
i=1 yi
n

s2y =
∑n
i=1 (yi−ȳ)2

n−1

Now the model becomes ŷ∗ = b1z1 + b2z2 + · · ·+ bkzk. The model using
scaled response and regressors has no intercept (all centered at 0).
Unit length scaling:
Regressors:

wij =
xij−x̄j√

Sjj
, Sjj =

∑n
i=1 (xij − x̄j)2

Sjj is the corrected sum of squares for xj .
Now each wj has mean w̄j = 0 and length√∑n

i=1 (wij − w̄j)2 = 1

Response:
y0
i = yi−ȳ√

SST
The regression model is now:

ŷ0 = b1w1 + b2w2 + · · ·+ bkwk

Z′Z = (n−1)W′W so estimates of regression coefficients from these two
scaling methods are identical.

2.9 Indicator Variables

Levels in categorical variables induce changes in intercept (slope un-
changed and identical). The slope will also change if there are any interac-
tion terms. For categorical variables with a levels, we would need a−1 in-
dicator variables. Assume a fitted model ŷ = β̂0 +β̂1x1 +β̂2x2, with x2 as
an indicator variable. The (100−α)% CI on β2 is: β̂2±tn−p(α/2)SE(β̂2).

Suppose we add interaction term β3x1x2 to our model. Test for the sig-
nificance of the interaction term: H0 : β3 = 0 vs H1 : β3 6= 0. This
can be done by t-test or ANOVA:

F0 =
SSR(β3|β2, β1, β0)

MSRes
∼ F1,n−p

Test if the 2 regression lines for Type A and Type B are identical (or test
the significance of the variable x2):
H0 : β2 = β3 = 0 vs H1 : β2 and/or β3 6= 0

F0 =
SSR(β2, β3|β1, β0)/2

MSRes
∼ F2,n−p

where SSR(β2, β3|β1, β0) = SSR(β2|β1, β0) + SSR(β3|β2, β1, β0) or
SSR(β2, β3|β1, β0) = SSR(β3, β2, β1|β0)− SSR(β1|β0).

2



3 Checking for Model Adequacy

� Linearity assumption: relationship between the response y and the
regressors is linear (at least approximately). We check the scatter
plot of y vs x, but linearity in the multiple model is more difficult
due to dimensionality of the data.

� Assume errors ε1, ε2, · · · , εn
iid∼ N(0,σ2). This implies the normality,

constant variance, and independent errors assumptions.

Plotting one-dimensional graphs (e.g. histogram, stem-and-leaf, scatter
plot, boxplot) indicate the distribution (symmetric or skewed), gives an
idea as to whether we should work with the original or transformed vari-
ables. It can also point out presence of outliers in the variables. Two-
dimensional graphs present scatter plots of pairwise variables to observe
correlation between variables.

3.1 Residual Analysis

The residuals ei = yi− ŷi have zero mean and their approximate variance
can be estimated by∑n

i=1(ei − ē)2

n− p
=

∑n
i=1 e

2
i

n− p
=
SSRes

n− p
= MSRes

The residuals are not independent (because of assumption
∑n
i=1 ei = 0),

but when p << n the nonindependence has little effect on their use for
model adequacy checking.

We defined hat matrix H = X(X′X)−1X′ and have ŷ = Hy. Then
ŷi = hi1y1 + hi2y2 + · · · + hinyn for i = 1, · · · , n which means ŷi
is a weighted sum of all the given observations. hii is the lever-
age value for the ith observation, the weight given to yi in deter-
mining the ith fitted value ŷi. The residual then can be written as
e = (I−H)y. Substituting y = xβ + ε, we have e = (I−H)(Xβ + ε) =
Xβ −HXβ + (I−H)ε = Xβ −X(X′X)−1X′Xβ + (I−H)ε = (I−H)ε.
Furthermore Var(ε) = σ2I and I −H is symmetric and idempotent, so
Var(ε) = (I−H)Var(ε)(I−H)′ = σ2(I−H). Thus Var(ei) = σ2(1−hii),
Cov(ei, ej) = −σ2hij .

Standardized residuals is defined
as ei

σ
√

(1− hii)

Since σ is unknown, estimate it by√
MSRes or σ̂(i), where

σ̂2
(i) =

SSRes

n− k = 2
=

SSRes(i)

n− p− 1

and SSRes(i) is the sum of squared
residuals when we fit the model to the
(n − 1) observations by omitting the
ith observation.

Both MSRes and σ̂2
(i)

are unbiased estimator of σ2.

Internally studentized residuals: Substitute
√
MSRes into the standard-

ized residuals: ri = ei√
MSRes

√
(1−hii)

(rstandard() in R)

Externally studentized residuals: Substitute σ̂(i): r
∗
i = ei

σ̂(i)
√

(1−hii)

The two forms of the residuals are related by r∗i = ri

√
n−p−1

n−p−r2i
.

Normal probability plot: ordered S.R. (x-axis) vs cumulative probability
or normal scores (y-axis). Normal scores are what we expect to obtain
when we take a sample of size n from N(0, 1). If the residuals are
normally distributed, ordered residuals should be the same as ordered
scores. Expect a (nearly) straight line with intercept 0 and slope 1.
Scatter plot of S.R. vs fitted values: expect points to be scattered
randomly. Funnel/double-bow shape indicate nonconstant variance; ap-
ply transformation to regressor/response, or use WLS. Curved shape
indicated nonlinearity; transform or add more variables.

3.2 Detection and Treatment of Outliers

An outlier is an extreme observation considerably different from the ma-
jority of the data. Residuals considerably larger in absolute value than the
others (say 3 or 4 sd from the mean) indicate potential y-space outliers.

3.3 Lack of Fit of the Regression Model

Lack of fit test (more useful for simple model): Suppose x has m levels
x1, · · · , xm, with ni observations on the response at the ith level. Let yi,j
denote the jth observation on the response at xi. There are n =

∑m
i=1 ni

total observations. The ijth residual is yij − ŷi = (yij − ȳi) + (ȳi − ŷi),
where ȳi is the average of the ni observations at xi. Squaring both sides
and summing over i and j, we have

m∑
i=1

ni∑
j=1

(yij − ŷi)2 =

m∑
i=1

ni∑
j=1

(yij − ȳi)2 +

m∑
i=1

ni(ȳi − ŷi)2

SSRes = SSPE +SSLOF

where SSPE is the sum of squares due to pure error and SSLOF is
the sum of squares due to lack of fit. SSLOF is a weighted sum of
squared deviations between mean response ȳi at each x level and the cor-
responding fitted values. If ŷi are close to ȳi, there is a strong indication
that the regression function is linear. The test statistic for lack of fit is

F0 =
SSLOF /(m− 2)

SSPE/(n−m)
=
MSLOF

MSPE

∼ Fm−2,n−m

For simple model, use H0 : β1 6= 0 ≡
”model is linear”. Reject this H0

if F0 > Fm−2,n−m(α) and conclude
that regression model is not linear.

3.4 Leverage and Influence

The hat matrix H = X(X′X)−1X′ determines the variances and co-
variances of ŷ and e since Var(ŷ) = σ2H and Var(e) = σ2(I −H). The
elements hij from H can be interpreted as the amount of leverage exerted
by the ith observation yi on the jth fitted value ŷj .

Diagonal elements of H, hii = xi(X
′X)−1x′i (where x′i is the ith row of

the X matrix) is a standardized measure of the distance of the ith obser-
vation from the center of the x space. Large hii reveals observations that
are potentially influential.

Since
∑
hii = rank(H) = rank(X) = p, the average size of a hat diagonal

is h̄ = p/n. Hence we traditionally assume that any observation for which
the hat diagonal exceeds 2p/n is remote enough from the rest of the data
to be considered a leverage point (only applies to large sample size where
2p/n < 1). Not all leverage points are influential points, but observations
with large hat diagonals and large residuals are likely to be influential.

Cook’s Distance: squared distance between least squares estimate based
on all n data points β̂ and the estimate by deleting the ith point, β̂(i):

Di = (M, c) =
(β̂(i) − β̂)′M(β̂(i) − β̂)

c
, i = 1, · · · , n

where usually M = X′X and c = pMSRes. Magnitude of Di is usually
assessed by comparing it to Fp,n−p(α). If Di = Fp,n−p(0.5), deleting
point i would move β(i) to the boundary of an approximate 50% confi-
dence region for β based on the complete dataset. Since Fp,n−p(0.5) ' 1,
consider points with Di > 1 to be influential. Di may be rewritten as

Di =
r2
i

p

hii

1− hii

4 Correcting Model Inadequacies

4.1 Variance-Stabilizing Transformations

Useful guidelines:

Relationship of σ2 to IE(y) Transformation
σ2 ∝ constant y′ = y (no transformation)
σ2 ∝ IE(y) y′ =

√
y (Poisson data)

σ2 ∝ IE(y)[1− IE(y)] y′ = sin−1(
√
y)

σ2 ∝ [IE(y)]2 y′ = ln(y)

σ2 ∝ [IE(y)]3 y′ = y−1/2

σ2 ∝ [IE(y)]4 y′ = y−1

4.2 Transformations to Linearize the Model

Figure Function Transformation Linear Form

6.1 Y = αXβ Y ′ = log Y,X′ = logX Y ′ = logα+ βX

6.2 Y = αeβX Y ′ = lnY Y ′ = lnα+ βX
6.3 Y = α+ β logX X′ = logX Y = α+ βX′

6.4(a) Y = X
αX+β

Y ′ = 1
Y
, X′ = 1

x
Y ′ = α− βX′

6.4(b) Y =
exp(α+βX)

1+exp(α+βX)
Y ′ = ln Y

1−Y Y ′ = α+ βX

4.3 Analytical Methods

Box-Cox power transformation yλ to correct nonnormality and/or non-
constant variance:

y(λ) =

{
yλ−1
λ

, λ 6= 0

log y, λ = 0

to fit the model y(λ) = Xβ + ε. Simpler λ for interpretability.
Box-Tidwell regressor transformation (for simple model):

ξ =

{
xα, α 6= 0

log x, α = 0

1. Initially fit a model by least squares, ŷ = β̂0 + β̂1x

2. Fit a new model, adding w = x log x: ŷ = β̂0
′
+ β̂1

′
x+ γ̂w

3. Take α1 = γ̂

β̂1
+ 1

This procedure can be repeated using a new regressor x′ = xα1 (fit
y ∼ xα1 ), and converges quite rapidly.

3



4.4 Weighted Least Squares

Linear regression models with nonconstant variance can also be fitted
by WLS. The deviation between observed yi and expected ŷi is multi-
plied by weight wi chosen inversely proportional to the variance of yi.
In the simple model, we minimize weighted sum of squares S(β0, β1) =∑n
i=1 wi(yi − β0 − β1xi)

2.

β̂0

n∑
i=1

wi + β̂1

n∑
i=1

wixi =
n∑
i=1

wiyi

β̂0

n∑
i=1

wixi + β̂1

n∑
i=1

wix
2
i =

n∑
i=1

wiyixi

Solving the above will give WLS estimates of β0 and β1. Idea: if each
error has variance σ2

i , choose the weight wi = 1/σ2
i so that variances will

be (approximately) equal; points with low variance will be given larger
weights and vice versa. The WLS estimates are:

β̂0 = ȳw − β̂1x̄w, β̂1 =

∑n
i=1 wi(xi − x̄w)(yi − ȳw)∑n

i=1 wi(xi − x̄w)2

where x̄w and ȳw are weighted means: x̄w =
∑n
i=1 wixi∑n
i=1 wi

, ȳw =
∑n
i=1 wiyi∑n
i=1 wi

.

WLS estimators are still unbiased, and weighted mean squared residuals
MS(w)Res is also an unbiased estimator of σ2.
One way to estimate the weights is to use the multiple repeated (or nearly
repeated) values of the regressor. For each cluster of x values, obtain sam-
ple mean x̄ and sample variance s2y . Consider s2y as response and x̄ as
regressor, find a least squares fit, then substituting each xi value into the
LS equation will give an estimate of the variance of the corresponding yi.
The weight wi is the inverse of this estimated variance.

4.5 Generalized Least Squares

Consider y = Xβ+ ε, where IE(ε) = 0,Var(ε) = σ2V. Assumptions made
for errors correspond to V = I. The least squares normal equation is
(X′V−1X)β̂ = X′V−1y with solution β̂ = (X′V−1X)−1X′V−1y, the
GLS estimator of β.
WLS for GLS: when errors ε are uncorrelated but have equal variances,
the covariance matrix of ε is of the form

σ2V = σ2


1
w1

1
w2

. . .
1
wn


Let W = V−1, then W is a diagonal matrix with diagonal elements or
weights w1, w2, · · · , wn. The WLS equations are (X′WX)β̂ = X′Wy

with WLS estimator β̂ = (X′WX)−1X′Wy.

5 Multicollinearity

Sources of MC: the data collection method employed, constraints in the
model or population, model specification, or an over-defined model.

5.1 Effects of Multicollinearity

Define matrix C = (X′X)−1. Cjj = 1
1−R2

j

where R2
j is the multiple

coefficient of determination from regression of xj on the remaining k − 1
regressors. If there is strong MC between xj and any subset of the other
k − 1 regressors, R2

j will be large, thus Cjj will be large.

Since Var(β̂j) = σ2Cjj = σ2(1 − R2
j )−1 for j = 1, · · · , k, strong MC

implies that the Var(β̂j) is very large. Generally, Cov(β̂i, β̂j) will also be
large if xi and xj have MC relationship.

MC also tends to produce β̂j that are too large in absolute value.
Squared distance between LS estimate and true paramter is denoted L2

1 =

(β̂− β)′(β̂− β), then IE(L2
1) = IE[(β̂− β)′(β̂− β)] =

∑k
j=1 IE(β̂j − βj)2 =∑k

j=1 Var(β̂j) = σ2Tr(X′X) where the trace of a matrix is the sum of the

main diagonal elements (sum of the eigenvalues). When MC is present,
some of the eigenvalues of X′X will be small. Let λj denote the jth

eigenvalue of X′X, then IE(L2
1) = σ2

∑k
j=1

1
λj

, so L2
1 may be large.

5.2 Detecting Multicollinearity

Check off-diagonal elements rij in X′X. If |rij | ≈ 1, may indicate MC.
If regressors are scaled, Cor(X) = X′X.

V IFj = Cjj =
1

1−R2
j

One or more large values of VIF (> 10 here) indicate multicollinear-
ity. The width of the CI of βj is Lj = 2(Cjjσ

2)1/2 × tn−k−1, and the
width of the corresponding interval based on orthogonal reference design
with the same sample size and root-mean-square (rms) values (rms =∑n
i=1(xij − x̄j)2/n, which is a measure of the spread of regressor xj) is

L∗ = 2σtn−k−1. The ratio of these two widths for xj is Lj/L
∗ =

√
Cjj .

Thus, the square root of the jth VIF indicate how much larger the CI for
the jth regression coefficient is because of MC.

The eigenvalues of k × k matrix A are all the k roots of the equation
|A − λI| = 0. The eigenvalues of X′X: λ1, · · · , λk can be used to mea-
sure the extent of MC in the data. Small eigenvalues indicate MC.
Define condition number of X′X as κ = λmax

λmin
, which measures the spread

in the eigenvalues. κ < 100: no serious problem; 100 < κ < 1000:
moderate to strong MC; κ > 1000: strong MC. Define condition indices
κj = λmax

λj
, for j = 1, · · · , k. The number of large condition indices

(> 1000) indicate the number of near-linear dependencies in X′X.

5.3 Dealing with Multicollinearity

Collect more data or respecify the model, or use ridge regression (find an
estimate that is biased but has smaller variance than unbiased estimator).

We want to find a biased estimator β̂∗ such that MSE(β̂∗) < MSE(β̂).

The ridge estimator β̂R is defined as the solution to (X′X+kI)β̂R = X′y.

β̂R = (X′X + kI)−1X′y = (X′X + kI)−1X′Xβ̂ = Zkβ̂ where k is to be
determined.

MSE(β̂R) = Var(β̂R) + (bias in β̂R)2

= σ2
k∑
j=1

λj

(λj + k)2
+ k2β′(X′X + kI)−2β

where λj are the eigenvalues of X′X. As k increases, variance decreases
and bias increases.

SSRes = (y −Xβ̂R)′(y −Xβ̂R)

= (y −Xβ̂)′(y −Xβ̂)︸ ︷︷ ︸
SSRes from OLS

+(β̂R − β̂)′X′X(β̂R − β̂)

When k increases, SSRes of β̂R increases, R2 decreases. k can be chosen
by inspection of the ridge trace; select a small k at which ridge estimates
β̂R are stable.

6 Variable Selection

Deleting variables improves the precision of (1) the parameter estimates
of retained variables, (2) the variance of predicted response, but it can
introduce bias in them unless the deleted variables are ”insignificant”.
Retaining insignificant variables can increase the variances of estimates
and predicted response.

6.1 Criteria for Evaluating Subset Models

A regression model with p regressors has MSRes(p) =
SSRes(p)
n−p . In gen-

eral, MSRes(p) increases as p increases. The increase in MSRes(p) occurs
when the reduction in SSRes(p) from adding a regressor to the model is
not sufficient to compensate for the loss of one degree of freedom. We want
a model with minimum MSRes(p) as it equivalently maximises RAdj,p.

AIC is based on maximizing the expected entropy of the model. Let L be
the likelihood function for a specific model, then AIC = −2 log(L) + 2p

where p = k + 1. In the case of OLS, AIC = n log(SSRes
n

) + 2p. BIC
is the Bayesian extension of AIC. BICSch = −2 log(L) + p log(n). For

OLS, BICSch = n log(SSRes
n

) + p log(n). Among models, the one with
smaller AIC/BIC preferred.

6.2 Stepwise Regression

Forward selection: assume no regressor in the model, variables added
one at a time. First regressor to be added is the one with the highest
correlation with response. If the F statistic corresponding to the model
containing this variable is significant (larger than some pre-selected value
Fin), then that regressor is entered. The second regressor chosen for entry
is the one that now has the largest correlation with y after adjusting for
the effect of the first regressor entered on y. This correlation is referred
to as partial correlation.

1. Derive fitted values and residuals from Model 1: ŷ = β̂0 + β̂1x1

2. Fit regression models: x̂j = α̂0j + α̂1jx1, for j = 1, · · · , k

3. Derive simple correlation between residuals of Model 1 and residuals
from k − 1 models above.

4. The xj that gives the highest correlation will be the next regressor
to enter the model

Suppose at step 2, x2 has the highest partial correlation with y. This

implies that the largest partial F statistic is F =
SSR(x2|x1)
MSRes(x1|x2)

. If this

F value exceeds Fin, x2 is added in. Procedure terminates when partial
F test at a particular step does not exceed Fin or when last regressor is
added.
Backward elimination: all variables are in the model originally, examined
one at at time, removed if insignificant. Starting model has k regressors,
partial F statistic are computed for each regressor as if it was the last
variable to enter. Regressor with smallest F statistic is examined first
and will be removed if this value is less than Fout. Fit a new model with
rest of (k − 1) regressors and calculate partial F statistics again. The
process continues until are regressors are examined.
Stepwise: a modification of forward selection. At each step, all regressors
are reassessed via their F (or t) statistic. If the partial F (or t) statistic
for a variable is less than Fout (or tout) then the variable is dropped.
Stepwise regression requires two cutoff values, one for entering and one
for removing variables. Usually Fin > Fout.
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